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Abstract. For a solution of charged rods the static structure factor is derived in a weak- 
coupling expression. The interaction between the rods is assumed to be a superposition 
of screened Coulomb interactions between point charges distributed along the rod. Screen- 
ing arises from the counter ions as well as from salt in the solvent. We treat the case of 
an isotropic solution as well as the nematically ordered state. 

1. introduction 

The static structure factor of charged spherical macroparticles in solution as measured 
by light or neutron scattering is well understood according to the work of Hayter and 
Penfold (1981) and of Hansen and Hayter (1982). The situation is rather different for 
charged rod-like macroparticles. Here even the experimental situation is scarce. A 
detailed experimental study of the static structure factor and of related functions like 
the radial distribution function and the effective potential has been performed 
(Hoffmann et al 1983) on systems of rod-like micelles for different concentrations. 
The interpretation of these results is intricated to some extent because the length of 
the rod-like micelles is not fixed, but it may change with concentration in an unknown 
way. In systems of macroparticles the intensity of scattered light or neutrons depends 
on the form factor and  structure factor, the latter being caused by interparticle 
correlations. For spherical particles which are much smaller than the wavelength of 
light or neutrons the form factor can be expressed by F ( k  = 0) = 1. Because of the 
large length of the rods this approximation is not allowed for systems of rods. Usually, 
biologists or physical chemists are more interested in the form of the particles, consider- 
ing the appearance of the structure factor in the scattering signal as a mere nuisance, 
whereas physicists take the opposite point of view. Therefore it is desirable to obtain 
additional information on both quantities, either from separate experiments or by 
theoretical calculations. 

So far there is no theory for the structure factor of rod-like systems comparable in 
standard to the above mentioned procedures for interacting spherical particles. The 
theory presented in this paper can only be considered as a first step in this direction. 
Similar to the theories employed for charged spherical particles, our starting point is 
the Ornstein-Zernike equation. 

The latter equation is, however, much more complicated for rod-like particles, since 
the correlation functions also depend on the direction of two interacting rods in addition 
to the distance vector of their centres of gravity. So far we have only succeeded in 
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solving this equation in a weak-coupling limit, which is equivalent to the Debye-Huckel 
approximation for point-like particles. This approximation may be appropriate for 
weakly interacting systems which are sufficiently dilute, so that the mean distance 
between the centres of gravity of two rods is still larger or of the order of the length 
of the rods. 

Recently a paper on the same subject has appeared by Benmouna and  coworkers 
(Benmouna er a1 1982) and will be discussed in 0 5 of this paper. However, we want 
to stress here that their theory applies to a totally different concentration regime. This 
arises from the fact that these authors use an  expression for the second virial coefficient 
of a system of infinitely long rods (Zimm 1946, Onsager 1949, Stigter 1977). Applied 
to systems of rods with finite length this can be only a sound approximation as long 
as the mean distance between the centres of gravity is much smaller than the length 
of the rods, although still much larger than their diameter. 

2. The model 

A system of N rigid rods of length L and vanishing diameter d is considered. The 
centres of gravity are situated at rJ, j = 1,. . . , N and the j t h  rod has an  orientation 
denoted by the unit vector U,. 

Since we are interested in dilute systems of charged rods with L >> d,  where the 
concentrations are about L-3 or even smaller, we can neglect hard-core effects, which 
become important in concentration regimes of (dL*)-’.  The total charge Q on each 
rod is assumed to be homogeneously distributed, and interactions between rods will 
be taken as a screened Coulomb interaction. 

As an intermediate step each rod is represented by n + 1 point particles carrying 
the charge Q / ( n +  l ) ,  which are equally distributed along the rod axis of length L. 
Later on, the number of point particles will be taken to infinity. The position of point 
particle cy of the j t h  rod is 

The concentration of particles is 

Its Fourier components in the limit n + cc are 

c ( k )  = 1 exp(ik.  r , ) j , ( L k .  u , / 2 )  
N 

1 = I  

where &(x) = (sin x) /x .  
The static structure factor is defined as 

(3) 

= N - ’ ( c ( k ) c ( - k ) ) .  (4) 

Here, U is the interaction potential, p = ( k s T ) - ’  and the integrations are over the 
configuration space. 
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Without interactions ( U  = 0) one obtains from (4) and (3) the form factor of an  
infinitely thin rod (Pecora 1968) 

The interaction potential for charged rods of infinite length is derived by Brenner and  
Parsegian (1974). However, we are interested in concentration regimes of the order 
of L-3 or smaller. Therefore, the distance between neighbouring rods is about L or 
even larger. In this case we have to consider rods with finite length. We therefore 
assume the interaction potential U(r,  u I ,  U,) of two charged rods, whose centres of 
gravity have the vector distance r and which have orientations U ,  and U?, respectively, 
to arise from a screened Coulomb interaction between each of the n + 1 point particles 
of charge Q/ (  n + 1) on the first rod with each of the n + 1 point charges on the second 
one: 

Here, E is the dielectric constant of the solvent and 

is the Debye-Huckel screening parameter. The charge of a counter-ion of species U 

is denoted by qv and their concentration by pr The ansatz (6) assumes a spherical 
double layer around each point charge on the rod. This is obviously not correct, 
t-,cause the other point charges along the rod axis will disturb the counter-ion cloud 
around the charge under consideration. However, the ansatz is exact for the two limiting 
cases L + O  and qo+ 0;  therefore we assume that (6) will approximate the real inter- 
action potential in a reasonable manner for weakly screened systems. 

Representing the screened Coulomb factor in (6) by its Fourier integral, one can 
perform the limit n + m and obtain 

3. Static structure factor in Debye-Huckel approximation 

The aim is to establish the equivalent for rod-like particles of the well-known relation 
between the static structure factor and the radial distribution function for isotropic 
particles. Therefore the Ornstein-Zernike equation is written as (Stell 1977) 

h(r,, ,  a,, a,) = C ( r 1 2 ,  R I ,  % ) + ( ~ / 4 . r r )  I d3r3 d a 3  C( r13 ,  01, a3)h(r323 a,, 0 2 ) .  (9) 

Here, h denotes the total correlation function and  C is the direct correlation function. 
Both functions depend on the vector distance rI, = r, - r, of the centres of gravity and 
on the orientations U, and U, of particles i and j .  Instead of U, we can also denote the 
orientation by the polar angles R ,  = (e,, cp,) .  The correlation functions in (9) are Fourier 
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transformed and developed in terms of spherical harmonics as 

m I '  

d3k exp(-ik r )  1 1 Y?m(nl) Y/ ,m,( f l>)h/m, / ,ms(k)  
/ , i '=o = - L  -I '  

(10) 

where 

h/m,/rm,(k) = d3r dfl1 dfl, exp(ik.  r?  Y , m ( n l )  Y ~ , , , ( n ~ ) h ( r ,  a,, a,? 
(11)  

and similarly for C ( r ,  R I ,  f12). The oz equation (9) can then be rewritten as 

(12) 
P 

h /m , / ,m, (k )  = C / m , / , m , ( k )  + [c,, C / m , / , , m , ' ( k ) h  /,,m,,,,,m,(k). 

The main approximation in the present treatment is to replace the direct correlation 
function in the spirit of the linear Debye-Huckel theory by - P U ( r ,  u l ,  u z ) .  This 
replacement is exact only in the limit r + 00, for potentials which vanish faster than 
F3, as discussed by Stell (1977). Since in our case the potential is of screened Coulomb 
type, this condition is fulfilled. The extension of the exact asymptotic result to all 
distances is in the spirit of the mean-field approximation. In Fourier components we 
therefore write 

C /m , / ,m, (k )  = -P U / m . / ' m , ( k ) .  (13)  

Here, UI, , I ,m , (k )  is given in terms of U ( P , ~ ,  U , ,  u z ) ,  (8), by a formula equivalent to 
( I  1 ) .  In  the case of k parallel to the z axis we get a simple expression for U/m,I, , , (k2)  
by expanding the j ,  in spherical harmonics. We get from (8) 

where 

The index 1 takes the values I = 0, 2 ,4 ,  . . . and j , ( x )  denotes spherical Bessel functions. 
Equations (13) and (14) are used in (12).  Iterating the resulting equation produces 

a geometric series which is summed up  to give 

where 

Q 2 /  &eo v ( k )  =- 
q : + k ' '  

In an  isotropic system S ( k )  does not depend on the direction of k. Therefore we can 
use k parallel to the z axis without loss of generality. The structure factor S ( k )  (4) 
can now be related to h , , . ( k ) .  From (4) and  (3) and the expansion of j ,  in terms of 
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spherical harmonics, one obtains 

Here 

1225 

(18 )  

= 4 d  Y d n l  1 Y d R I  1) + 4 d  N - 1 )  (exp[ik(r, - r,)tl Y d R ,  1 Yid%)) 
(19) 

where z" denotes the unit vector in the direction of the z axis. Whereas the first term 
in (19) is just S I I . ,  the second one is essentially the Fourier transform of the angle 
dependent generalisation of the radial distribution function for rods 

g ( r 1 2 ,  R I ,  Cl , )  = ( 4 ~ r / p ) ' N ( N  - 1) d'r,. .  . d3rN dR, . . . d R N  e -pu /  J dT e-P". J 
(20) 

The second term in (19) is then given by ( p / 4 ~ r ) g d k ) ,  where g d k )  is given by a 
formula like (1 1) with k parallel to the z axis and m = m'= 0. Since g = h + 1, one has 
gfI , (  k )  = hII.(  k )  for k # 0, so that 

S d k )  = S I I , +  ( p / 4 . ? r ) h I J k )  (21) 

then S ( k )  is given from (18) and (16) by 

S ( k )  = F ( k ) / ( l  + p v ( k ) F ( k ) ) .  (22) 

This result corresponds to the Debye-Huckel theory for point particles, but here the 
form factor F ( k )  for rods enters. The main difference from the Debye-Huckel treatment 
for spherical particles arises because the form factor of the point particles is 1, whereas 
F (  k )  for an  infinitely thin rod is given by (5). The effect of the interactions between 
rods on the structure is described by S ( k )  = S ( k ) / F ( k ) ,  

An interesting point of the result for s( k )  is the fact that, although this quantity stems 
entirely from correlations between rods, again the form factor enters in the denominator. 
This can be easily understood because the form of the particles enters the interaction 
law (8). In the mean-field approximation (23) the influence of the form is particularly 
simple; it enters the formula just as a factor, multiplying the direct correlation function 
between point particles of the same charge as the rods. If one goes beyond the 
mean-field approximation, also v ( k )  would depend on the form of the particles. 
Nevertheless, the simplicity of the result (23) suggests the following pragmatic improve- 
ment: use the general form of (23), but insert for v ( k )  a better approximation for the 
direct correlation function of spherical particles. 

In figure 1 the result for s ( k )  is shown for rods of length L = 3000 A and a total 
charge of Q = 120 elementary charges. The salt-free solution is assumed to be very 
dilute, the concentration being such that there are 0.1 rods per volume L3.  Due to the 
presence of the form factor F ( k )  in the denominator of (22) the structure factor S ( k )  
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increases faster as a function of kL than the corresponding structure factor for point-like 
particles (which is the curve denoted by cos 8 = 0). In figure 2 salt has been added, 
which increases s( k)  at long wavelengths due to increased screening. 

Figure 1.  Static structure factor s( k )  for an  isotropic system (full  l ine) and for a nematically 
ordered system (dashed l ines).  6 is the angle between director and  scattering vector (a ,  
cos 6 =  1: b, cos 0 =0.5;  c, cos O =O). Q =  12Oe, qol=0.593.  

10 0 2 4 6 8 
kL 

Figure 2. As figure 1 but for a system with added salt, leading to a stronger screening of 
the interaction ( a ,  cos O =  I :  b, cos 6 = 0 . 5 :  c, cos 0 = 0 ) .  Q =  120e, q , l=3 .143 .  

4. Static structure factor for fully aligned rods 

If all rods are assumed to be parallel to each other without any ordering of their centres 
of gravity, the structure factor will depend not only on the magnitude of k but also 
on its direction relative to the rod axes. Let the z axis of a coordinate system be 
parallel to the rods and let 8 denote the angle between the scattering vector k and this 
z axis. If such order exists the single particle form factor F ( k )  and S ( k )  are anisotropic 
and they will depend on 8. 

The concentration fluctuation (3) becomes in this case 

c l l (k )  =j,,[Lk(cos 0 ) / 2 ] 1  exp(ik.  5 )  (24) 
I 

and the form factor is 

Fll(k) =j;(Lk(cos 8 ) / 2 ] .  
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In figure 3 Fl l (k)  is shown as a function of kL for three different angles. If cos 8 = 0, 
so that k is perpendicular to the rods, the system degenerates to a point particle system 
because of the assumption of infinitely thin rods. 

Figure 3. Form factor of rods in the nematic state (dashed lines) and in the isotropic state 
(full  line) (a, cos B =: 0 ;  b, cos 6 = 0.5; c, cos B = i ). 

The interaction potential (23) simplifies to 

In the Ornstein-Zernicke equation the integration over the directions can be performed 
since all rods are parallel. Proceeding as in the isotropic case leads to the structure factor 

(27)  

In  figure 1 the quantity Si(k) = Sl , (k ) /F l , (k )  is plotted for three different angles 8. If 
k is parallel to the rods, Sll(k) increases much faster as a function of kL compared 
with the isotropic case and if k has a finite angle with the z axis. For 8 = 60", Sll(k) 
is similar to the isotropic case for kL< 6. 

With the addition of salt the qualitative appearance of .$ (k)  is similar, but the 
additional screening increases the values of 

S , , ( k )  = F,,(k)/(l + p v ( k ) F  ( k ) ) .  

( k )  at small kL. 

5. Discussion 

In  this paper we have presented a theory for the static structure factor of charged 
rod-like macroparticles in solution. The interaction law of two rods was assumed to 
be a superposition of screened Coulomb interactions between point charges distributed 
along the rod. Although this superposition ansatz is exact for the unscreened Coulomb 
interaction, it is only an approximation for the screened case because it neglects 
correlations among the counterions and correlations between counterions and neigh- 
bouring point charges along the rod. Our main interest is weakly screened systems. 
Then, as long as the mean interparticle distance is not too small compared with the 
rod length, the above mentioned effects should be of minor importance. Also it has 
been found in the theory of simple liquids that such details of an interaction law bear 
little influence on the shape of the static structure factor and related quantities (see, 
e.g., figure 44 in Hansen and  McDonald (1976)) .  

Much more restrictive with respect to the utility of our theory is the linear Debye- 
Huckel ansatz, which closes the Omstein-Zernicke equation. Therefore, our results 
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are only valid for weakly coupled systems at low concentrations. As a consequence 
the static structure factor S( k )  is a monotonously increasing function of the wavevector 
and shows no correlation maximum, as was observed in experiments (Hoffmann et 
a1 1983). 

For a dilute system of infinitely long hard rods the static structure factor takes the 
following form (Zimm 1948) 

(28) 

M being the molecular weight and A, the second virial coefficient. The latter depends 
on the diameter and the length of the rods (Zimm 1946, Onsager 1949, Stigter 1977). 
This expression can only be supposed to be valid if the diameter of the rods is much 
smaller but the length much larger than the mean distance between centres of gravity. 

Benmouna and coworkers proposed (Benmouna et a1 1982) using expression (28) 
also for systems of charged rods, approximating the screened Coulomb potential by 
an effective hard-core potential with charge- and screening length-dependent diameter. 
This can be only a reasonable approximation as long as the potential is sufficiently 
steep. Therefore, the theory of Benmouna and coworkers applies to strongly screened 
systems at concentrations where the mean distance between centres of gravity is much 
smaller than the length of the rods, which is just the opposite situation compared to 
the presuppositions of our work. Also the theory of Benmouna and coworkers fails 
to produce a correlation peak in the true structure factor S( k )  = S (  k ) /  F (  k ) .  

S( k )  = 1 - 2A,MpF( k ) ,  
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